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a b s t r a c t

Molecular dynamics simulations of collision cascades in pure tungsten are performed to assess the pri-
mary damage due to irradiation. For short-range interaction the universal potential is used [J.F. Ziegler,
J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, 1985, p. 41], while
for long-range interaction, three different embedded atom method potentials [M.W. Finnis, J.E. Sinclair,
Phil. Mag. A 50 (1984) 45; G.J. Ackland, R. Thetford, Phil. Mag. A 56 (1987) 15; P.M. Derlet, D. Nguyen-
Manh, S.L. Dudarev, Phys. Rev. B 76 (2007) 054107] are used, namely, Finnis–Sinclair, Ackland–Thetford
and Derlet–Nguyen–Manh–Dudarev, the latter providing a more accurate formation energy for the h110i
interstitial. The short-range and long-range potentials are smoothly connected. A new approach improv-
ing the reliability of such potential fits at short distances is presented. These potentials are then evaluated
on the basis of displacement threshold, point defect formation and migration energies, thermal expansion
and temperature of melting. Differences in the damage resulting from collision cascades are discussed.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Due to its high melting point and good irradiation resistance
tungsten is a promising candidate material for high temperature
and irradiation applications, e.g. for the divertor armour of the fu-
ture thermonuclear fusion reactors. The 14 MeV fusion neutron
irradiation of metals produces atomic displacements which result
in vacancies and interstitials. These point defects may form clus-
ters such as cavities and dislocation loops and cause irradiation in-
duced hardening and shift of the ductile to brittle transition
temperature to higher values [5].

In this paper molecular dynamics (MD) simulations are used to
study the influence of the tungsten empirical interatomic potential
on the amount and type of radiation damage. Two existing poten-
tials, namely Finnis–Sinclair and Ackland–Thetford [2,3], already
studied in [6,7], overestimate the formation energy of the h110i
interstitial. A new potential [4] was developed to solve this prob-
lem. The focus of this investigation is to evaluate this potential in
the formation of radiation damage by displacement cascades in
comparison to previously studied potentials.

2. Method

2.1. Simulation setup

The modified MD code MOLDY [8] is used to study the damage
produced by self-irradiation in tungsten. The system sizes are
ll rights reserved.
chosen according to the primary knock-on atom (PKA) energy
and the number of atoms ranges from 119,000 to 2 million. The
chosen PKA directions are h122i, h133i, h135i, and h235i. For all
simulations periodic boundary conditions and constant volume
are used. Details can be found in [7]. The simulation is stopped if
for 2 ps there is no change in the produced defects.
2.2. Potentials

Three empirical embedded atom method (EAM) potentials for
W are used. There are firstly the one named Finnis–Sinclair (F)
[2] and its improved version named Ackland–Thetford (A) [3],
which contains one additional core term in the repulsive pair inter-
action part for distances smaller than 2.7 Å to improve the com-
pressibility at high pressures. However, both F and A potentials
predict a difference in formation energy for h110i and h111i inter-
stitials of 0.7 eV, while the ab-initio value is 0.3 eV [9]. The third
potential named Derlet–Nguyen–Manh–Dudarev (D) [4] provides
the correct energies of the interstitials.

For use in collision cascades, the short-range interaction is re-
placed by the universal potential named Ziegler–Biersack–Littmark
(ZBL) [1]. Previously [7] we have also tried the Biersack–Ziegler
[10] potential, but there was no significant difference in the simu-
lated damage resulting from displacement cacades.

The short and long-range potentials are smoothly connected in
such a way that the value of the pair interaction and the one of its
first derivative are continuous. The connecting expression is

W ¼ expðc0 þ c1r þ c2r2 þ c3r3Þ; ð1Þ
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Table 2
Comparison of the vacancy, h111i dumbbell and h110i dumbbell formation and
migration energies for the F, A and D potentials.

Potential Ef
v (eV) Ef

111 (eV) Ef
110 (eV) Em

111 (MeV) Em
v (eV)

F 3.631 7.810 8.441 30.7 1.442
A 3.632 8.889 9.613 26.7 1.449
D 3.557 9.476 9.771 61 2.054
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where r is the distance between atoms and the coefficients c0–c3 are
determined by fitting the long range and short-range parts at fixed
cutting points r1 and r2, which are chosen to be 1.0 Å and 2.2 Å,
respectively. The cutting point r1 is smaller than the value of around
1.5 Å we chose in our previous work [7] in order to significantly
improve the smoothness of the fit for the potentials F and A. The
potential D can also be smoothly fitted with those cutting points,
but unfortunately the resulting displacement threshold of 70 eV is
too high, as it should be about 50 eV [12]. In order to improve it,
new cutting points for the D potential are devised, at 0.8 Å and
1.34 Å, respectively, giving a threshold of about 45 and 61 eV,
respectively. The value of 1.34 Å gives intentionally equal first
derivatives of the D and ZBL potentials, thus providing a smoother
fit.

The electronic density function is truncated for smaller dis-
tances as already described in [7]. At distances shorter than r1

the electronic density is a constant qmax and between r1 and r2

we use a connecting formula in the following form:

q ¼ b0 þ b1r þ b2r2; ð2Þ

where b0–b2 are fitted so that the density function and its first
derivatives are continuous. This truncation should ensure that for
distances smaller than r1 the forces are only due to the universal po-
tential. It should be remembered that in the EAM of the Finnis type
the total potential energy Ei of an atom i surrounded by atoms j is
given by

Ei ¼
1
2

X
j

V ij �
ffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

qij

s
; ð3Þ

where Vij is the pair-interaction term and qij is the contribution of
the electronic density of atom j on atom i, both terms being se-
lected empirically. It shows that the embedded term at short dis-
tance is still calculated, hence the truncation alone is not
sufficient as for short distances the potential energy is lower than
the one predicted by the universal potential by a value of

ffiffiffiffiffiffiffiffiffiffiqmax
p

This problem is not very important for EAM potentials having
small electronic density function at short distances, e.g. for the
F and A potentials, but may be crucial for potentials with a large
electronic density as the D potential. Indeed, because of the intrin-
sic empirical nature of these potentials, there is freedom in the
choice of the embedded term, which can be compensated by the
repulsive pair term to provide an appropriate fit to selected prop-
erties of the material. This arbitrary choice makes the comparison
of different EAM potentials more difficult. We propose two possi-
ble solutions. The first one denoted I is to shift the universal po-
tential by

ZBLshift ¼ þ
ffiffiffiffiffiffiffiffiffiffi
qmax
p

: ð4Þ

The potential energy of a pair of free atoms, a dimer, will then
be correct for distances smaller than r1. In the second one, denoted
II, we do not consider free atoms but instead one atom is in a per-
Table 1
The fitted coefficients b and c for different potentials together with cutting points r1, r2, s

Potential r1 (Å) r2 (Å) b0 (eV2)

F, A 1.00 2.20 20.310 555
D 0.80 1.34 610.906 512

Potential c0 c1 (Å�1) c2 (Å�2)

F.I 11.199 517 �5.964 926 1.022 769
F.II 11.364 142 �6.311 414 1.235 717
A.I 13.034 079 �10.385 873 4.360 975
A.II 13.198 705 �10.732 360 4.573 923
D.I 12.665 511 �9.355 569 3.165 690
D.II 12.964 293 �10.239 391 3.985 637
fect BCC lattice and a second free atom is approaching it. Then the
shift of the universal potential should be

ZBLshift ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qmax þ qBCC

p
� ffiffiffiffiffiffiffiffiffi

qBCC
p ð5Þ

in order to recover the correct potential energy at short distances.
The qBCC is the value of the background electronic density for an
atom in a perfect BCC lattice.

The corrections are negligible in case of the F and A potentials,
noting that the embedding term and the electron density function
is the same for both potentials, where the universal potential fit is
shifted by 5.19 eV and 0.90 eV in solution I and II, respectively,
while for the D potential they are more important, with shifts of
60.35 eV and 50.47 eV, respectively. All fitted parameters are sum-
marized in Table 1.

3. Results

3.1. Displacement thresholds

The displacement thresholds calculation is based on the method
presented in [11]. However, fixed PKA directions are used, namely
h100i, h110i and h111i, and the seed for the random number gen-
erator used for calculating the initial Maxwell-distributed veloci-
ties of the atoms at temperature of 10 K is changed at every
occurrence. The small differences in atom positions in the sample
in the moment of initiation of the PKA should have the same effect
as the small random changes in the PKA directions as used in [11].
The system is then cooled down and Frenkel pairs are analyzed.
PKA energy is increased from 40 eV with a step of 2 eV and at least
10 random seed values for each PKA energy are used. The mini-
mum threshold is found in the h100i direction. The results are
summarized in Table 1. The experimental value is 50.5 ± 1 eV [12].

A variation of the cutting points r1 and r2 for the fit of the D po-
tential between 0.1 and 1.2 Å and 1.04 and 1.64 Å, respectively,
yields the same displacement thresholds. Increasing the cutting
points beyond those values increases the displacement threshold.
It appears then that the displacement threshold is governed mainly
by the long-range part.

3.2. Point defects

Point defect formation and migration energies calculated in a
sample of half a million atoms are summarized in Table 2. The
hifts of the universal potential and calculated displacement thresholds.

b1 (eV2 Å�1) b2 (eV2 Å�2) qmax (eV2)

13.187 521 �6.593 761 26.904 316
7578.149 368 �4736.343 355 3642.166 260

c3 (Å�3) ZBLshift (eV) Ed (eV)

�0.168 289 5.186 937 45
�0.208 956 0.981 816 45
�0.920 110 5.186 937 61
�0.960 777 0.981 816 61
�0.252 553 60.350 363 55
�0.496 414 50.474 200 55



Fig. 1. Static migration energy profiles for the h111i interstitial in the 111 direction. (a) Potential A and (b) potential D.
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h111i migration energy for A corresponds well to the potential
barrier of 26.7 MeV in the h111i direction determined by static cal-
culation [3] (see Fig. 1a). It is not the case for D, as the static calcu-
lation yields only 9.8 MeV (see Fig. 1b). It appears that there are
curious singularities in the potential along h111i, which do not
seem to have been explicitly introduced in the design of potential
D [4], which result in a h111i interstitial movement slightly devi-
ated from the exact h111i direction. The mean square displace-
ment of a single h111i interstitial in a box of 119,000 atoms
followed for 5 ns for temperatures between 100 and 300 K and
for 1 ns for temperatures between 400 and 1200 K is presented
in the Arrhenius plot in Fig. 2. During the observation time at least
hundred jumps of the interstitial are seen at the lowest tempera-
ture of 100 K. The resulting migration energy for the D potential
is 48 ± 10 MeV, while for the A potential it is 23 ± 6 MeV. Note that
the experimental value is 54 ± 5 MeV [9]. The observed migration
is 1-D at low temperature and at temperatures of 850 K and
575 K the migration starts to be 3-D for the A and D potentials,
respectively. The observed lower transition temperature for D is
a result of the lower formation energy of the h110i interstitial,
which is an intermediate state in the h111i interstitial direction
Fig. 2. Arrhenius plot for 1-D migration of the h111i interstitial in the 111
direction for the potentials A and D. The corresponding migration energies are
23 ± 6 MeV and 48 ± 10 MeV for the potentials A and D, respectively.
change. The 3-D nature of the migration does not affect the Arrhe-
nius plot much at high temperatures as the change of direction
rarely occurs.

3.3. Thermal expansion and temperature of melting

The thermal expansion is shown in Fig. 3. Note the negative
thermal expansion with the D potential. The experimental thermal
expansion is around 4.5 � 10�3 at 1000 K. At this temperature it is
close to the one obtained with the A potential. For the determina-
tion of the melting point, an amorphous sphere is introduced in-
side a cubic box and the interface between amorphous and
crystalline phase is observed for 10 ps at various temperatures.
In this manner the conditions in the liquid cascade core during
the thermal spike are simulated. The boundary conditions can be
constant volume as in cascades or zero pressure to compare with
the experimental melting point of tungsten, which is 3695 K. Re-
sults are summarized in Table 3.

3.4. Cascades

Collision cascades were simulated at 10 K and 523 K and for a
PKA energy of 10, 20 and 50 keV and a PKA direction h122i, h133i,
Fig. 3. Linear thermal expansion of the potentials F, A and D.



Table 7
Statistical cascade results for 50 keV, 10 K. Vac is the number of produced Frenkel
pairs. Vvac and Vint is the average volume occupied by one vacancy or interstitial,
respectively. Vac in cl. and int in cl. is the proportion of vacancies or interstitials in
clusters.

Potential vac Vvac (Å3) Vint (Å3) vac in cl. (%) int in cl. (%)

F I 49.6 ± 2.8 7.8 ± 1.8 18.3 ± 1.5 44 ± 3 45 ± 4
F II 49.1 ± 2.4 8.4 ± 3.9 20.4 ± 3.5 45 ± 3 48 ± 4
A I 43.7 ± 1.6 9.8 ± 2.5 18.8 ± 2.3 38 ± 3 54 ± 3
A II 41.6 ± 2.4 19.8 ± 5.6 28.5 ± 5.8 34 ± 3 47 ± 4
D I 65.2 ± 4.8 10.5 ± 1.9 10.3 ± 1.9 29 ± 2 82 ± 2
D II 67.1 ± 5.1 24.9 ± 9.5 16.5 ± 4.8 29 ± 3 80 ± 2
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h135i and h235i. The statistical results are summarized in Tables 4–
7. In each case at least 20 simulations with different random seed
number are performed and averaged. The numbers of defects pro-
duced with the different potentials agree within the statistical er-
rors. It seems thus that the number of defects at high PKA energies
does not depend on the displacement threshold energy.

The spatial distribution of vacancies also seems to be similar for
all the potentials, although one would expect higher volume per
vacancy and lower vacancy in clusters ration in the D potential
due to its lower melting point and thus larger melted cascade core.
This effect can be partially seen at 50 keV, where also slightly more
Frenkel pairs are created. The effect might be better seen at higher
PKA energies or higher temperatures. Note that the anomalous
negative pressure in the D potential should be accounted for in this
interpretation.

On the other hand, interstitials are found further away from the
cascade core for the potentials F and A, which results in a higher
volume per interstitial and lower clustering percentage of intersti-
tials. This effect is due to the lower migration energy of the h111i
Table 3
Temperatures of melting for the potentials A and D with constant volume and zero
pressure boundary conditions.

Potential Tm (K) V = const Tm (K) p = 0

A 6400–6450 5150–5250
D 4500 3750

Table 4
Statistical cascade results for 10 keV, 10 K. Vac is the number of produced Frenkel
pairs. Vvac and Vint is the average volume occupied by one vacancy or interstitial,
respectively. Vac in cl. and int in cl. is the proportion of vacancies or interstitials in
clusters.

Potential vac Vvac (Å3) Vint (Å3) vac in cl. (%) int in cl. (%)

F II 11.6 ± 0.8 3.8 ± 1.1 15.1 ± 4.2 33 ± 4 31 ± 8
A II 9.8 ± 0.8 4.1 ± 1.1 13.2 ± 3.8 27 ± 7 25 ± 9
D I 9.8 ± 0.6 4.9 ± 0.6 10.8 ± 2.2 19 ± 4 52 ± 5
D II 9.5 ± 0.4 4.2 ± 0.4 8.7 ± 1.9 22 ± 3 53 ± 4

Table 5
Statistical cascade results for 10 keV, 523 K. Vac is the number of produced Frenkel
pairs. Vvac and Vint is the average volume occupied by one vacancy or interstitial,
respectively. Vac in cl. and int in cl. is the proportion of vacancies or interstitials in
clusters.

Potential vac Vvac (Å3) Vint (Å3) vac in cl. (%) int in cl. (%)

F II 9.7 ± 0.7 4.6 ± 0.8 48.5 ± 8.2 32 ± 7 19 ± 6
D I 6.8 ± 1.6 4.5 ± 1.3 11.3 ± 7.0 17 ± 12 58 ± 8

Table 6
Statistical cascade results for 20 keV, 10 K. Vac is the number of produced Frenkel
pairs. Vvac and Vint is the average volume occupied by one vacancy or interstitial,
respectively. Vac in cl. and int in cl. is the proportion of vacancies or interstitials in
clusters.

Potential vac Vvac (Å3) Vint (Å3) vac in cl. (%) int in cl. (%)

F 18.9 ± 1.6 10.2 ± 2.9 21.3 ± 2.1 25 ± 5 29 ± 4
F I 18.0 ± 0.9 5.5 ± 0.8 21.1 ± 2.0 27 ± 3 27 ± 3
F II 20.8 ± 0.9 5.6 ± 0.7 18.6 ± 1.8 31 ± 2 31 ± 3
A 15.6 ± 0.9 8.1 ± 2.0 20.9 ± 5.7 23 ± 4 35 ± 6
A I 16.2 ± 0.8 5.6 ± 0.8 19.7 ± 2.5 26 ± 5 30 ± 5
A II 16.3 ± 0.9 7.5 ± 1.7 18.2 ± 3.3 26 ± 4 30 ± 6
D I 17.4 ± 1.0 11.5 ± 1.4 16.6 ± 3.0 18 ± 3 61 ± 4
D II 17.8 ± 0.9 8.7 ± 1.4 11.5 ± 2.2 17 ± 3 64 ± 3
interstitials for those potentials, allowing for their rapid escape
away from the cascade core.

4. Conclusions

The investigated potentials produce similar results of collision
cascades even though their displacement thresholds are different.
A substantial difference in the spatial distribution of interstitials
is, however, found. They are diffusing further away from the cas-
cade core with the potentials F and A relative to results obtained
with the D potential. It is attributed to the lower migration energy
of interstitial obtained with the F and A potentials. These poten-
tials also predict a too high melting temperature and a too high for-
mation energy of the h110i interstitial. While the D potential is
more appropriate there, it yields a negative thermal expansion.
We did not observe any important impact of these effects on colli-
sion cascades; probably even higher PKA energies or higher tem-
peratures are needed.

A new approach for connecting any general EAM potential to
the universal potential is presented. The method overcomes the
problematic arbitrary choice of the embedding term, which is com-
pensated at long distances with the pair interaction terms. How-
ever, we also compensate it for short distances where the
universal potential governs the pair interaction and in this way
we are able to obtain potentials that are better comparable to each
other. The two proposed corrections I (dimer case) and II (perfect
BCC case) give very similar results for the studied tungsten poten-
tials as the electronic densities of those potentials produce similar
shifts of the universal potential.

A different approach is to shift the universal potential by a fitted
value to exactly recover the experimental displacement thresholds
[11], but contrary to the present method the shifts are mainly neg-
ative. It seems that at least for the potential D and the chosen cut-
ting points the displacement threshold is due to the long-range
part itself, which may be refined to match experimental values.
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